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The equation considered here in which a small parameter accompanies the higher 

derivative (the vanishing-viscosity type equation) differs from the model turbu- 
lence equation due to Burgers [l] in that the solutions of the corres~nding deg- 

enerate equation (at zero viscosity} possess a periodic dependence on a linear 
combination of the coordinate and time only, and satisfy the conditions of the 

type of conservation and dissipation law at the discontinuities, We investigate 

how such solutions of the degenerate equation may be approximated by smooth 
solutions of an equation containing a vanishing viscosity term, the smooth solu- 
tions depending on the same combination of the independent variables. These 

solutions and their passage to the limit are of interest when constructing a math- 
ematical description of the roll-waves. 

Under certain, not yet fully investigated conditions determined by the channel 
parameters and the character of the perturbing force, so-called roll-waves (hence- 

forth to be denoted by RW) appear in the open, steady state, turbulent flows. 
These waves show a sharply defined periodic&y with appreciable concentration 
of the fluid mass taking place within narrow zones situated near the wavefronts 

moving with constant velocity. This phenomenon may lead to the necessity of 
reducing the rate of flow in the channel and may also generate sharp pulsating 

stresses in the streamlined surfaces [2 and 37, 
As the RW are periodic and have constant velocity, self-similar periodic sol- 

utions li (~9 t) of the equations of hydrodynamics must be used to provide their 

mathematical description, the solutions depending only on the wave argument x 

L’(!/, 1) u 64, x :-I !/ - ct (ij.3) 

Here y is the coordinate parallel to the direction of motion of the RW, c is the 
velocity of the RW, ‘t is time and u (3) denotes the profile of the RW. 

Only the self-similar solutions of the type (0.1) will be considered. Those 
which have a smooth or a piece-wise smooth profile and for which the relations 

of the type of the well known hydrodynamic conditions of conservation and diss- 
ipation hold on each discontinuity, shall be called the RW solutions (a more aec- 
urate definition is given below in Sect. 11. 

The present paper deals with a model des~riptio~ of the roll-waves using the 
RW solutions of 

--ca<d<a, c >o, & >, 0 (0.2) 

This equation differs from the well known model turbulance equation due to 
Burgers [Z] by an additional term d (II -- c) (terms of this type are called the 
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turbulent drag terms and appear in the dynamic equation of the St, Venant system 
of hydraulic equations widely used in computing nonsteady turbulent flows [4]). 

When the last term which describes the influence of viscosity is deleted from 
(0.2), the resulting expression (E-an be regarded as a model equation for the St. 
Venant system (like the latter system this equation has no smooth RW solutions, 

although it has piecewise smooth RW solutions b]). Inclusion of the dissipative 

term e&% / dya into (0.2) removes sharp peaks and vertical fronts from the RW 
solution profiles. It will be shown later that the “blurring” of these fronts can be 

reduced as much as we please by making a > 0 sufficiently small. 

We note that if we put d = 0 in (0.2). i, e. if we restrict ourselves to the 

Burgers equation, we shall not be able to approximate the vertical front of the 
RW solutions of the equation with “zero” viscosity, using the curved fronts of the 

smooth RW solutions of the equation with “vanis~ng’~ viscosity. The reason for 
this is, that at zero viscosity the Burgers equation has neither smooth, nor piece- 
wise smooth RW solutions, 

A sequence of RW solutions of (0.2) which converge as e -) 0 can be construc- 

ted by choosing for each value of E > 0 that RW solution, for which a certain 
functional assumes the same value as for the approximated RW solution of this 
equation obtained when a = 0. 

In Sect, 2 a wavelength type functional is used to construct a convergent sequ- 
ence of the RW solutions of (0.2). In Sect. 3 we obtain the principal term of the 
asymptotic expression describing the deviation, with s --+ 6 of the RW solution 

of (0.2) selected with the aid of this functional, from the RW solution of (0.2) 
for E -= 0 (the rate of convergence as viscosity tends to zero), This deviation 

is averaged, with the exponent p >, 1 over a region on the yt -plane, which 

may be arbitrarily large and contain discontinuities in the RW solutions of (0.2) 
at E = 0. In the Sect-4 and 5 similar results are also obtained for the amplitude 
functional of the RW solution. 

Asymptotic estimates of this kind find use in quantitative descriptions of the 
dissipative terms such as e@u i 8~ 2. Moreover, such estimates help to judge the 
accuracy of finite difference schemes which use the “numerical iscosity to 

approximate to the first order quasi-linear differential equations [5] encountered 
in hydromeehanics. 

Inequalities providing an estimate of certain norms of the differences between 
the non-self-similar solutions of the degenerate and non-degenerate equations 
were proved in [ 6 - 8}_ 

In Sect. 6 the passage to the limit is interpreted on the phase plane of the 

profile equation corresponding to (0.2). The problem of the passage to the limit, 
with vanishing viscosity in the class of solutions of the form (0.1) of a quasi-linear 
parabolic equation, was formulated in [S]. In [lo] it was shown that if such a 
passage to the limit with e --f 0 is possible, then it is possible (provided that the 
term characterizing the turbulent drag has well defined properties) only in the 
RW solution of the initial hy~rbo~~ equation containing one discontinuity per 
period of the profile. Below we show that each RW solution of (0.2) obtained 
for E = 0 and containing one discontinuity per period of the profile is indeed 

the limit as E --+ 0 of the corresponding sequence of the RW solutions of (0.2) 

with E > 0. 
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1. The lolutfonm under conllderrtlon and the method of approx- 
Imrtion, The RW solution of the equation 

shall be called its classical solution of the form u, (IJ, f) -= uE (x) bounded uniformly 

on - 00 < .I: -<oo (these solutions will be denoted by I(~). 

The RW solution of the equation 

au,: (y. t) 
at -I- & (+ uo2 (!/, t,) = u, (y, q - c 

(1.2) 

shall be called the function of the form u, (y, t) = ~a (x) with the profile u,, (x) 

periodic in cz and containing not more than a finitb number of the first order discontin- 

uities zi per period. When 5 + pi , this function is continuously differentiable and 

satisfies (1. Z), and the limit values attained on approaching the discontinuities from the 

left and from the right, satisfy the relations [Z] 

110 (Xi -f 0) + 110 (J.i - 0) E 2 c, lJO (.l,i + 0) < u0 (Xi - 0) (i = 1.2. .I (1.3) 

(We shall denote such solutions of (1.2) by uO. 

Relations (1.3) at the discontinuities of uO represent the Hugoniot and dissipation re- 

lations at the discontinuity corresponding to (1.2). 

The set of,all U, corresponding to the given E > 0 and assuming its minimum value 

at LZZ = 0, shall be denoted by M,. The remaining U, differ from those entering 111, 

only by an insignificant shift in the value of the argument 3 of the profile Us (~1, E‘) 

_> 0. We shall consider the approach of an arbitrarily fixed solution U, (.y, t) E 1111, 

by the solutions c’, (y, t) E Al,, c ,,’ 0. 
We note that by virtue of the theorems on vanishing viscosity [S] the sequence of 

solutions I:, (y. t) of (1.1) converges to ( o iv, 1) as t‘ - 0 provided that the initial 

conditions are equal to each other, i. e. 

u, (Y? t) I’=‘) = I/” (Y. I) I’&” (- -c << J/C XJ, & >@) 

However, the elements of a sequence constructed with the help of the above condition 

are not functions of the wave argument 7 !I -~ CL only. Thus in this case the piece- 

wise smooth RW solutions of (1.2) are not approximated in a manner, natural in the 

physical sense, by the smooth solutions of (1.1) of similar structure and containing the 

viscosity term To obtain the required approximation 1~~ -- /ii, as F - (1. we shall consider 

a different method of selecting the elements of the convergent sequence r/C for each 

value of F > 0 

We shall approach an arbitrarily fixed solution I/,, (y, t) 6~ llJ, by choosing, for each 

E > 0 a solution 17, (y, 2) ~3 .I[ F satisfying the condition 

(1) (Gi: (!/, 1)) :: (1) (IT,, (y. f)), 
F >i) (‘1 . ‘t) 

Here (1~ is a functional with the following properties: 

1. 11 (il’) 2 u .\I,. 
E >o 

. 
2. For each solutton I’,, (!I, /) E ‘]fC, a number t: (lTO, (I)) exists such that for 0 ._’ 

< c ( F (I!“, (I)) a unique solution 17 ~ (!I, 1) satisfying (1.4) exists in :lI, 

3. The sequence I,‘, (~1, t) determined by (1.4) satisfies 
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II 4 (Y9 t) - UI, (Y, q llLp (a) -+ 0, E - 0 (P >, 1, rues Q < ml (1.5) 

The class of the functionals of the type ~IJ is not empty; the functionals 7’ and rl con- 

sidered in Sect. 2 and 4 respectively also have the Properties 1 to 3. We find, more 

accurately, how they converge in the vicinity and away from the discontinuities in ug 

In particular, the principal term of the asymptotics of the left-hand part of (1.5), is 

obtained for e - 0 

From (1.1) we obtain for each fixed E > (J 

AI, = {U, (,//, t, C) ! u, (y, t, C) = ZI, (:r,C), 1 <c < x} 

Here UC (x, c) is determined by a one-parameter C -family (u, (5, c), u,(x, C)) 

of bounded solutions of the autonomous system 

e g = (1 - v) (c - u), (1.6) 

The bounded solutions of this system have corresponding cycles L (E, c) on the UC 

phase plane, determined by the equation 

(U - c)’ 
7 - (f(v) + in C) = 0 (f (v) - lU(1 - ZJ) + I’, 1 <<‘: < -L) (1.7) 

“e 

The cycles are symmetrical with respect to the straight line 7~ ==. c and fill the half- 

plane u < 1. The other half-plane v _GY \ 1 is filled with unbounded trajectories which 

shall not be considered here in view of the definition of the RW solutions given above. 

Setting F : o in (1.6) we find that I’,, containing any prescribed number of the points 

of discontinuity per period of the profile may be found in Ji,. Nevertheless, only those 

profiles u,, in which two neighboring points of discontinuity are separated by the length 

of the period [lo] can be regarded as limiting for the sequence of profiles 11~ with 

E - 0 . Such profiles !l,, have the same left (right) limit values for all points of discon- 

tinui ty. 

Taking (1. :I) into account we find :lf, represented by the following family contain- 

ing a parameter 72 f (_ x << 77’ ,< c): 

:u,, = {c’, (y, t, u+) j l!,, (y, I, (1;) = 11” (x, u+); u. (s, li+j 11’ t 5 for 

f) < 2 C iC_ - [L+, ug (x I- II- - II’, 7l+) z== 110 (X, 7l-) for - CCJ < Z a<: OO} 

(II- --: 2c - I!+) (1.8) 

The dependence of the functions belonging to _\I, (.\I,) and of their profiles and 

derivatives on the parameter. c’ (or respectively u+) will not be given each time. 

2. The convergence when the periods rc,and (te are equal. Let 
us define the functional T on d -11, by putting each solution belonging to :llL, E > 

E I, 
> 0 into one-to-one correspondence with the period of its profile llE (1:). 

From (1. 8) follows: 

T (U” (!/. t, UC)) -b 0 for Ii'-+C-0, T(U,(!/,t,//')')-m,* Q 
for UT -.4 c 

while from (1.6) and (1. ‘7) we have [ll] 

T (lit (r/l t, c,) = T+ (I:, !I) !- T- (e, C), T+ (E, C) .= @-F _[ '~(2, qc ((:))d: 
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r- (8, C) = l/z3 f cp (2, - w, (C)) dz, ‘p (2, CT) = Q (f @q) + In c)-“z(1 - zq)-’ 
0 

l>q,(C)=maxv-+l, 
(U.V)ELP.C) 

O < WE (C) =( -41eU~~ 30 
u, 1 

T (UC (Y, t, 0 -+ w for C3 =, e = con& 

qI(C)40, T(U,(y,t,C))-t21/En for C-,1 +O, e=const 

f(QL(C)) = J(- zo, (C)) = - InC, ‘*>O for l,<C<m, E >o (2.1) 

Passing in (1.6) to polar coordinates and using a theorem on periods I-121 we find, that 
when e = const , T (U, (y, t, C)) is strictly monotonous and increases with C, 1 < 
< C < 00, assuming all values between 2 1/z& and 00. Thus, Eq. (1.4) containing 

the functional Tas @ has a unique solution U, (y, t) E M, for any TJ, (L/, 2) E 
*E MO and any fixed value of E, 0 < E < E (U,, T) = n-"(c - ZL+),. 

The functional T also possesses the Property 3 of Sect. 1. Indeed, let us fix any 

UO (Y, t) E MO. We denote by C c the value of the parameter 6 of that function 

belonging to M,, which satisfies (1.4) when T = (Jr and U, (y, t) is substituted intoits 
right-hand side. The dependence of C p on U’ is not given here. From (1.8) and (2.1) 

follows: 

C,-+x, qE(CE)-+I, we(G)*=, T-(e,C,)+O 

min IL - u+, maxu+u- for E - 0 
(u, a) E I.(E, C,) (u, 19 E UE,C,) 

(2.2) 

Moreover, taking into account the fact that the function U E (5, c) - u. (5, U+) de - 

creases monotonously ins E (0, 1) we find that when E, C and u+ are fixed, and 

condition (1.4) in which @ = T holds, u e converges uniformly to u. with respect to 

the points on the st-plane not belonging to the union of arbitrarily narrow strips adja- 

cent to the lines of discontinuity of UO 

T,==T(U,(y,t,u+))-u--u+, -cw<u+<c, O<S<T, (2.3) 

Since 6 can be made arbitrarily small, from (2.2) we can obtain (1.5). 

3. The rate uf convergence of ZI,+ u. when the period8 are 
oqualr We denote 

qE = qE (CA, we = WE (Cc), a:r = l/23”+ (e, C,), IA = V2T- (e, C,) 

J (e, w, z, y) = (E/2)‘lz ,[ (f (u) - f (w))-‘kh 
?4 

and agree to connect two functions of E with the sign =: if their quotient tends to 
unity when E -+ 0. 

Performing the change of variables y = In (1 - zq J In-l (1 - q J and y = 

= In (1 -k ZW,) In-’ (1 -I!- w c) in the integrals T+ (E, C e) and T- (E, C,) 
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respectively, we transform (1.4) with 0 = T, taking into account (2.2), to the form 

Cll]: 

(2&)-I/’ Ts = d - In (1 - QJ J+ (qL) + ~;‘/a In (1 + w,) J- (w,) 

J+(e) = 2, J- (we) z 1, 
dJ- (w,) 

dzo = 0 (up) 
L 

dJ+ (q,) 
- = (1 - qJ1 In (1 - qr) 0 (1) 

dq, 

(3.1) 

From (3. l), (2.1) and equations obtained by their termwise differentiation with respect 

to a, we obtain, taking into account (2.2). 

]rr(l - qr) z - l/sT;c-l, dw,/de z - 1/8T;~-2, w, z 1/8T;~ ,l (3.2) 
ln(1 -+ w,) z - In e, PC z - 2T;ldm, J(e,q,,q,,O)=cl(~) 

The penultimate relation in (3.2) provides an estimate of the distance along the t-axis 

on the 5~ -plane, by which the crest (2a e, U e 

Pa eY C,)) of the profile u E E M, fixed by the 
condition (1.4) with @ = 1’ on an arbitrary u,, fE 

E M, lags behind the crest (I’,, U-) of this pro- 

file us_ This lag is illustrated in Fig. 1. The acute- 

angled profile uO (X) of the RW solution u,, is de- 

picted by the thin line, and the profiles u e (X) of 

the RW solution 7~ C are shown by the lines whose 

thickness increases with increasing e. 
Let us now obtain the rates of convergence of 

(2.3) and (1. 5) (these 

(3.4) and (3.2)). 
From (1.6) to (1.8) 

Fig. 1. 

are given, respectively, by 

and (2.1) we have 

d.2. = Sign (c - I/, (.r)) i+)‘” (1 - v)-’ (f (v) - f(qE))-‘ldv 

u.(.r)=c-j’u,(~)d,r, u,(,):=c-3 d:r-;34 (3.3) 
r x 

u,, (r) - u, (x) = sign (z -- r,) J (E, qc,qE, u, (x)) - pE (0 <,c < 2~) 

which, together with the last two relations of (3.2), show that UO (2o &- u, (aa,) < 

< 0 for all sufficiently small E. Consequently the point of intersection of the profiles 
u e and u,, on the su -plane lies to the right of the maximum x = 2a e of the profile 

11 e (Fig. 1). Thus, by virtue of (1.8) (2.1). (2.2) and (3.3) we obtain the principal 
term of the norm in (2.3) with E --f 0 

11 U, (2/, t, u’) - U, (!/, t, Cc) Ijccn8) = ue (0, C,) - u+ = 2T,’ 1 E In 8 1 (3.4) 

The above relation gives an estimate of the deviation of uc from uO under the con- 
dition (1.4) with CJ = T, in a uniform metric on the xt -plane with arbitrarily narrow 
neighborhoods of the lines of discontinuity of u,, excluded. 
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To estimate the rates of convergence of ,U e -+ UO in the regions lying on the st -plane 
and containing the lines of discontinuity of uo, we pass to the estimates in L,, From (3.2) 
and (3.3) follows 

When 2 = 2a, we find from (2.1) and (3,3) 

u,(~)-Ue(2)=-~c+J(~,qt,gll,O~+Jf~~- 

- %, 0, v, (x)), 2% ss < 2% + PL (3.6) 
Utilizing the variable substitution given in (3.3) and integrating by parts we obtain, 
with (3.2) taken into account [ll] 

- 2p &[ Kp-1 (rE, 5) &E) r, =: 63 (To, p) E, rE = w;l 

(3.7) 

e(To,p)=2’-pT,P-‘(1/~-j- &/7(~,&P444 
where 8’ (a, b, C, Z) is the Gauss hypergeometric function. Using the MWowski in- 
equality we obtain from (3.2), (3.6), (2.2) and (3.7) 

11 i.Jg (4:) - 14, (2) j&#St,2;r,+P,) = @(TO, P) e 

TY 

k=O, i-1, r42,...; p>i, N>O - 
When (3. S) and (3.8) are used, the principal term of the asymptotics in (3.9) can also 
be computed for regions with a more complicated boundary. From (2.2) and (3.5) it 
follows that we have p = 1 in the right hand side of (3.9), if the boundary Q contains 
no points of discontinuity of U, ty, t). 

4, Converg6nae when the rmplttudeo of ue and ztol;rc) equ&f. 
From (1.6) - (1.8) it follows that when 

Eq. (1.4) has a unique solution in &I e for any U. (y, 2, u+) E M, and any 0 <F <ooe 
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Therefore the amplitude functional A has the properties 1 and 2 of Sect. 1, 
We now fix arbitrarily Us (y, t) E i%a and denote by C’ the value of the parameter 

c appearing in the function U e (y, t, C) e M, which satisfies (1.4) with Cb = A 
(Equation Connecting CC 

@,’ = r/sT+ (8, CC), 

I(% w, r) = 

and Uf is not given here). We also denote (see (1.8)) 

9 (8, 2, w, T) = (1 - 220)~ [2ef (zw) + (c - u+)al-“s 
1 

w II)(e,z,w,~)dz, u'(x)= U,(~,CC), vq~)= 
s 
0 

= u, (x, cc>, ye = qc (CL), A, = A (u, (.?.A t, u*>) 
UC @, t) = u, fy, t, Cc), a = lizA, = c - u+ = u- -c 

When @ = A we have from (1.6). (1.7) and (1.41 

frr C’ = r/as-r&s, 2Ef f$> + U2 = 0, .%t’ - T, = ,281 (8, Y=, 0) -+ o 61) 

for e 4 0 
Taking (2.1) into account we find that the inclined part (u” (z) > 0) of the profile u e 
converges uniformly in x E [O, T,] to the inclined part of the profile un 

I( U, (y, t) - U’ (Y, t) I[ c (IV) = uo (T,) - iAL (Q 3 0 for s 3 0 (4.2) 

III&= ((y,t)j6<y--c~~~,--}, 0<6<l/,To 

Let i (E, cc) be the time in which the representative point of (1.6) moves along 

t (8, c”) from the point (u-, 0) to the point (u, -zE (u,)), with ~9 (z) & 0, where 
U = -2’ (u) d e mes the ordinate v of the cycle I_. (E,_ f?) on the uv -phase plane f 

as a function of the abscissa u.with u & 0 and U+ < u < U-. 

To establish that the functional A has the Property 3 of Sect. 1, it is sufficient by 

virtue of (4.2) to show that 

~~~z~+Z(E,~L)-T,II~~,+,.-)=:~A,~IE~K~EI 

From (1.6) and (1.7) we have u 

’ 1 (E, u) = - 
1 

(z” (u))-” du, u+ < u 5 u- 

u- 

(4.3) 

du = - EV$ (e. 1, v, - i) dv, 2 (C + 62&f (v) + 4 s - v for v \< 0 (4.4) 
C,<U,<C+U 

which yieid [ IIf 

+ (u - CT y’ ds _ 

2EI’” (u) 
,._, 2.-io-1 ) e In E 1, c < u < u- 

By the symmetry of the trajectories of (1.6) we have 

f (E. U) == 21 (e. c) - I (E, 2c - u), U+<UugC 

1 (t.. U) s kit,-’ /E me/, 28 = n+; l(t7, u) s 214,~’ le ln e 1, u+ < u < u- (4.5) 
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and using the relations 

I (e, Vc (5j, 0) ‘=: z (&, qE, oj z 2.4o-r, 

from (4.1) and (4.5) we obtain (4.3). 

5 E (0, To) (4.6) 

The relations (4.2) and (4.3) describe the manner in which the RW solution n e with 

a smooth profile U, (x) converges, when E -+ 0 to the RW solution u0 with an acute- 
angled profile u0 (2) . This is shown graphically in Fig. 2, where the thickness of the 

lines representing the profiles u e (2) increases with increasing E 

Fig. 2. 

5. The rate of convergence when the amplitudes are equal, 
Relations (4.3) and (4.5) characterize the rate of convergence of the descending part 

(U’(X) < 0) of the profile U, to the vertical front us in the metric uniform with rer- 

pect to the ordinate u of the leading front { (5, u) 15 = T,, U+ < u < U-} appr- 

oached by us. The last relation in (4.4) defines the rate at which the slope of the de- 

scending part of the profile u e tends to the vertical slope of the front 710 (Fig. 2). 

Let us find the rate at which the ascending part (t? (a)> 0) of the profile u e tends 

to the ascending part of the profile uO. From (1.6) and (1.7) we have, for any E > 0 

i 

0, 5 = 0. 

‘ic (u. (x) - u, (x)) = I (e, 21~ (z), 0), 2 E (0, a’j (5.1) 
21 (E, QE, 0) - 1 (e, VL (2)~ 0)~ 5 E [u’, TO] 

Setting in (1.7) u = uL (?‘,), v :: zY (T,) and C = CE , in (5.1) 5 = T, and taking 

into account (1.8) we eliminate ZP (T,) - U- from the resulting set of two equations. 
Passing now to the limit with E -+ 0 and making use of (4.2). (4_ 4) and f4_ 6). we 

obtain UC (T,) z 1 - ee2, uo(x) - uc (x) z 2A,-‘E, z E (0, To) 

(5.2) 
u. (T,) - uL (T,) = Ij U, (y, ‘) - CJ, (Y, t) II c (~0) = 2 (1 + em”) h-l& 

Writing relations analogous to (5. I) for 2 > To, we can find the average rate of con - 

vergence of u e -+ uOover an arbitrary region D~,H with CD -= A (see (3.9)) 

// li, (y, t) - UE (y, t) 11 L*, (D~,~) z ti’lpAf+l)/pp (p, k) 1 E In & /‘/P 

p (p, Fc) = 0 (/Y/P) for kAm, p>l (5.3) 
We note that when a period functional is chosen as (1) (see Sect. I), the convergence 

u, - %I uniform in l/t ceases to hold even in a strip whose width is commensurate witl; 

the period U, (see (2.3) and (5.2)). When a) :~ T however, the expansion of the regio!l 

of approximation is not accolllpanii_J by decrease in the rate of conver~encr: :‘I. Sj, 

In the mannet analogoIl< IC : _,_, i > ac:! ,(‘? ,?) we can find :;:c 0::‘~~ :’ I\ ! i ! : /. -!IC, d;;rL., 

,1::ivei t.: .._ ,: ,Z,?,“i ::.: i ; 1. ,, ; , ; 
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II au0 (Y, 4 NJ= (Y, t) 1 au0 (Y, 4 I iwE (Y. 4 

aY - aY 
=- at - at II LP(Do, m 

s 
&ADO, H) c 

z {EH [2Zf&,, qc, p - 1) - z (E, vc (To), p - 21) z If H&-l (1 + 624lyp el’p 

Assuming that 2aC > To(see (4.1)) we obtain from (1.7) (2.1) and (5.2) 

By virtue of the periodic character of the solutions considered, it follows from the pre- 
vious discussion that for each U,, (y, t) E krO for any bounded region 52 of the yt - 

plane and for any cr > 0 such value of the viscosity a (o, Q, u,) can be chosen (for 

both, @ = T and @ = A) in the condition (1.4)) that when 0 < e < E (a, Q, U,) I 
the flattened part ot the integral surface u = us (Y, r) is found in the o- neighborhood 
of the flattened part (au,, (r/, t) / dy > 0) of the integral surface u .= U e (y, t), 
in the ytu -space, and *the steep part (8 U t (y, t) / dy 4 0) of the integral surface 
u e is found in the o-neighborhood of each vertical front { (Y, t, U) 19 - cr = xi, 

u+ & u 4 ZL-} u. situated in 52. When @ = T, the quantity e (0, Q, U,) is in- 
dependent of Q. 

Other functionals exist which have the properties 1 to 3 of Sect. 1 and remain const- 
ant with E ---t 0 over such sequences IL= -, u. on which the functuonals T and A are not 
constant. In particular, T+ is such a functional defined as the length of this part of the 

wave base, above which the inclined ((?)I &x, C) / ds > 0) part of its profile appears. The 
functional T+ can be obtained from the second formula of (2.1). 

0, Limiting parargo on the phrae plane. Let usdenote 

rs = {(u, u) ju+ < U < ZL-, u = U0 (u) = 1> 

fr, - oo) = {(u, c)/ u = u+, - 00 < U < I}, [s 7 
zz u- ,-~<V<l},Z= 

- CQ) = ((24, zy u = 
rs U b-, - 00) u [s, - 00) 

Let p = pE (6) be the equation written in the polar coordinates u - c = p cos 8, 
u = p sin 0 of the phase trajectory L (E, C’) of the profile r~ e (I, CL) defined by 

the condition (1.4) with 0 = A on an arbitrarily fixed ud E Mowhose profile is 

UO (2, U+), - 00 < Ut < C. Let also u = r,~,’ {u) be the equation, in Cartesian co- 
ordinates (u, v) on the phase plane, of that part of L (E, Cc) which lies on the half- 
plane z/ > 0. In addition we denote p0 = (a” + l)lL, f)* = arc& a-‘, Pe = 

= PE (e*), r] E = p e sin 8* and dl, (0) the distance between the point (oe (e), 0) E 
E L (E, C’) and Z. 

From (1.6) and (1.7) we obtain the following expression for the deviation between 
the phase trajectories of the profiles u c (2, Ce) and u0 (t, u+) 

fo, 
2a 



The right hand part of the last relation defines the abscissa u of the phase trajectory 

L’ (E, cc) of the profile u c (5, c’) as a function u = ZL; (u) of the ordinate, the plus 

sign referring to the right branch (U > C) and the minus sign to the left branch (u < 

< c). Since 8 can be made arbitrarily small, from (6.1) it follows that for arbitrarilly 

small 8 > 0 and large N there exists e (a, N) such that the phase trajectories L (e, cc) 

of all the profiles u c (5, Cc), 0 < e < e (a, N) in the half-plane v > - N do 

not leave the (T- neighborhood of 2. In particular, 

PO - PE * 0, ‘lC-+l for e-0 (6.2) 

Let us find the deviation of L (E, Cc) from 2 near the points (u+, 1) and (u-, 1) on 

the uv -plane. 

Taking into account the sign of MU: / &I determined by (1.6). we have 

max d, (6) = d, (H*) = (p. - p,) max (a, I} p,~-l (6.3) 
O<O<Ti 

Rewriting (1.7) in polar coordinates in view of (6.2), we find 

P, - P, = 2 (PO + P,)-’ CO+ 8* 11~ (i -- q,) + q,] E z p,,-’ Co@ R’ in (1 - $) E (6.4) 

Further, differentiating with respect to e (1.7) written in the polar coordinates for the 

point (p,, 6*), we can express dP, i de in terms of Q, pE, E and H*.litilizing also the 

expression for F obtained by going to the polar coordinates in the right-hand side of the 

third relation of (4.4) at the point (p,, O*), using the l’Hospita1 rule, we obtain 

Iim In (1 - q,) In-1 e = - sin 6* lim dpL / de (1 ~- qJ1 E = 

SAO E4 

= - l/la2 lim ((n,” - 1) [a”q, (1 - rl,) + i/&q, (II,< - 1) (In (1 -- q,) + q,)-’ I-‘} = 1 (‘3.5) 
n,-+l 

Now (6.3) and (6.4) yield 

max d, (0) = d, (U*) zu-“max{n, l}(elne] (6.6) 
O$(l<X 

The part of the trajectory L (E, C’) lying between the points whose polar coordinates 

are (a, U) and (p,, H*) (its nearness to the segment {(u, u)]u= u-, 0 < ti < 1) of the ray 

[s, - a))characterized by (6.6)). is traversed by the point representing the system (1.6) 

in the “time” (see (4.1) and (6. 5)) 

I(& 9,. - 1) = el (a, n*, 6) - $-‘(a, “(1,. 1, 0) f 1 -+ 0 for E -+ 0 (6.7) 

In accordance with the terminology of the theory of relaxation oscillations [13, 141, 

we shall call the line 2 defined by (6.1) and (6.6) the discontinuous trajectory of the 

degenerate (when e = 0) system (1.6) corresponding to the profile u0 (5, u+) 

From (6.1) and (6.7) it follows that for sufficiently small E a segment of rs whose 

length can differ as little as we like from 2a, can be found in an arbitrarily narrow 

neighborhood of the segment of L (e, C’) contained between the points whose polar co- 

ordinates are (p,, 6*) and (P,, .‘c - 6*) lying in the half-plane u 2 0 . As follows from 

(4.5) and (6.7). the segment of the trajectory L (E, C’) lying close to TS, is traversed 

by the point representing (1.6) in a finite “time” which tends to T,, when E - !) . 
Continuing to se the terminology of Cl3 and 141 we shall call the segment KS of the 

discontinuous trajectory, the segnlent of slow motions. 

In an arbitrarily narrow neighborhood of the remaining part (---n --- O* < 0 ..*:’ f_i*) 

of the trajectory L (F, (‘c) we find segments of the rays [r. -~ 00) and 1,s. - m) which 
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can be made arbitrarily long by choosing a sufficiently small e . From (4.5) and (6.7) 
it follows that this part of L (e, CL) is traversed by the point representing (1.6) in “time” 
which becomes vanishingly short when e --f 0, For this reason we shall call [r, - co) U 

I) [s, - co) the segment of rapid motions.. 

Figure 3 illustrates the convergence determined by (6.1), 
(6.2) and (6.6) of the phase trajectories L (E cc) of the 
profiles UC (z, cc) fixed by the condition (1.4) with @ = 

= A,to the discontinuous phase trajectory Z of the profile 

iL0 (x, u+) of an arbitrary RW solution ua E M,. 
Thus the discontinuity trajectory consists, as in the case 

of relaxation oscillations, of alternating segments of slow 

and rapid motion. The latter segment, in turn, consists of 

a section of instantaneous leaving the point s (“break-off” 

point) to - 00 along the ray [s, - m) and a section of in- 

stantaneous return (“drop” point) from - = to the point I’ 

along the ray [r, - CG) [13, 141. The segment of rapid 

motions connects (through the point at infinity) points at 

which the variable u assumes its maximum and minimum 

Fig. 3. value, the points themselves situated on the segments TS 
of slow motions representing the inclined part of the profile 

u0 &, IL+) on the UC -plane. Thus the segment of rapid motions on the uv phase plane 
plays the part of the vertical section of the profile u0 (z. u+) when the latter is mapped 

onto the .r~ plane. We must therefore treat the segment of rapid motions as a represen- 
tation of the vertical part of the profile u#, (2‘. rc’; on the uu phase plane. 

Let us note the difference between the passage to the limit considered here and the 

passage to the limit encountered in the theory of relaxation oscillations. The represent- 

ative point of the degenerate system moving on the discontinuous trajectory along the 
segment of rapid motions changes its direction of motion without reaching the segment 

of slow motions and arrives at the point of return I’ 2 moving in the direction opposite to 
that at s at the instant of break-off. 

The coordinates of the break-off and the drop points make the right-hand side of the 
equation with a parameter in (1.6) vanish, just as in [13, 141, but these points lie on 
a straight line orthogonal to those along which rapid motion takes place. In the case of 
the relaxation oscillations, one of the defining conditions at the discontinuity is that 

the consecutive break-off and drop points lie on the straight line of rapid motions. On 
the other hand, in the present case the conditions holding at the discontinuity are anal- 
ogous to the hydrodynamic conditions of conservation and dissipation corresponding to 

Eq. (1.2). Moreover, the direction of the break-off is not tangential but orthogonal to 
the trajectory of slow motions. 

We also note that in the present case no value of t: > 6 exists for which a neighbor- 
hood of the discontinuous trajectory could be found narrow enough to contain a single 
periodic solution of the system with t: > IJ [14]. On the contrary, in an arbitrarily 

narrow neighborhood of the discontinuous trajectory we find, for any t: > (’ , a contin- 
uum of closed trajectories of the system (1.6). (1.7) with E > II . 

Distinctions from the theory of relaxation oscillations result from the fact that the 

line 
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lying on the uu phase plane of the system (1.6) and composed of the states of equilib- 
rium of the equation containing e (provided that the coordinate entering this equation 
without E accompanying the derivative is regarded as a parameter varying over the 

whole numerical axis) is not a simple curve as is assumed in [13, 143. This line branches 

at the point (c, l), thus the state of equilibrium u m= 1 of the first equation of (1.6) 
with fixed u = c is not isolated. 

Characteristically, the merging of the stable and unstable states of equilibrium of 

(1.6) containing E taking place at (c, 1) does not lead to the break-off from the tra- 
jectory of slow motions approaching the point of merger, as it happens in the case of the 
relaxation oscillations. 

Contrary to (6.1), the closest approach made by the trajectory L (E, cc) at this point 
is, for each a > 9 , to the segment rs of slow motions. Irrespective of the fact that 

rs to the right of (c, 1) (Fig. 3) consists of unstable states of equilibrium, the slow 

motion along rs continues and the length of the unstable segment of slow motions tra- 

versed without break-off is equal to half of the amplitude of the approached u,, . Since 
the latter is arbitrary, this length can be made as large as we please (1.8). 

Although the segment of the trajectory of slow motions lying to the right of (c, 1) is 

unstable if we take into account the character of the component states of equilibrium, 

it is stable in the following limiting sense. In an arbitrarily narrow neighborhood of this 

segment we can find, for all sufficiently smalla > 0 , as was shown before, a contin- 

uum of orbitally stable trajectories of (1.6) which remain within this neighborhood be- 
tween the beginning (c, 1) of this segment and a point arbitrarily near to its end point 
s. 

The passage to the limit on the phase plane when a functional different from n is 
chosen as 60 in (1.4). can be dealt with in a similar manner. 

The author thanks E. B. Bykhovskii, A. Iu. Ishlinskii and G. A. Liubimov for discussions 

and comments. 
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Proof is given that the loss of stability of the equilibrium state of a self-gravit- 

ating fluid filling a rigid sphere having uniformly distributed internal heat sources 
is accompanied by the onset of a stationary axisymmetric (correct to within an 
arbitrary rotation) flow which remains stable in the vicinity of the point of stab- 

ility loss, This flow is numerically defined as a segment of the Liapunov-Schmidt 

series. The problem of thermal instability of a self-gravitating fluid sphere is 
associated with various theories and hypotheses of geo- and astro-physics, as 
well as with the study of fluid behavior in conditions of quasi-weightlessness. 
Earlier investigations were mainly directed toward the formulation and solution 
of the linearized problem and finding the limit of instability [l]. Their results 
were further developed in later publications(g2, 31 and others). The method pro- 
posed by Chandrasekhar (11 was applied in [4] to the related nonlinear problem. 
The theory of solution branching of equations of stationary convection [S, 6] is 
applied below to the study of convection onset in a self-gravitating fluid sphere. 

1, Statement of problem, A rigid sphere 8 or radius a is filled with a vis- 
cous incompressible fluid acted upon by a spherically symmetric radial gravitational 


